Genes down-regulated in MEF cells (embryonic fibroblast) isolated from HRAS [GeneID=3265] knockout mice.
Full description or abstract
We characterized differential gene expression profiles of fibroblast cell lines harboring single or double-homozygous null mutations in H-ras and N-ras. Whereas the expression level of the individual H-, N- and K-ras genes appeared unaffected by the presence or absence of the other ras loci, significant differences were observed between the expression profiles of cells missing N-ras and/or H-ras. Absence of N-ras produced much stronger effects than absence of H-ras over the profile of the cellular transcriptome. N-ras(-/-) and H-ras(-/-) fibroblasts displayed rather antagonistic expression profiles and the transcriptome of H-ras(-/-) cells was significantly closer to that of wild-type fibroblasts than to that of N-ras(-/-) cells. Classifying all differentially expressed genes into functional categories suggested specific roles for H-Ras and N-Ras. It was particularly striking in N-ras(-/-) cells the upregulation of a remarkable number of immunity-related genes, as well as of several loci involved in apoptosis. Reverse-phase protein array assays demonstrated in the same N-ras(-/-) cells the overexpression and nuclear migration of tyrosine phosphorylated signal transducer and activator of transcription 1 (Stat1) which was concomitant with transcriptional activation mediated by interferon-stimulated response elements. Significantly enhanced numbers of apoptotic cells were also detected in cultures of N-ras(-/-) cells. Our data support the notion that different Ras isoforms play functionally distinct cellular roles and indicate that N-Ras is significantly involved in immune modulation/host defense and apoptotic responses.
Collection
M2: Curated CGP: Chemical and Genetic Perturbations
Source publication
Pubmed 16909116 Authors: Castellano E,De Las Rivas J,Guerrero C,Santos E