Full description or abstract |
Ultraviolet B irradiation initiates and promotes skin cancers, photo-aging, and immune suppression. In order to elucidate the effect of these processes at the level of gene expression, we used cDNA microarray technology to examine the effect of ultraviolet B irradiation on 588 cancer-related genes in human keratinocytes at 1, 6, and 24 h post-irradiation with a mildly cytotoxic dose of ultraviolet B (170 mJ/cm(2)). The viability of the irradiated keratinocytes was 75% at 24 h post-irradiation. Various cytokeratins and transcription factors were up-regulated within 1 h post-irradiation. After 6 h, expression of a variety of genes related to growth regulation (e.g. p21(WAF1), notch 4, and smoothened), apoptosis (e.g. caspase 10, hTRIP, and CRAF1), DNA repair (ERCC1, XRCC1), cytokines (e.g. IL-6, IL-13, TGF-beta, and endothelin 2), and cell adhesion (e.g. RhoE, and RhoGDI) were altered in human keratinocytes. These data suggest the changes in a cascade of gene expression in human keratinocytes occurring within 24 h after UVB exposure. Although the roles of these cellular genes after UVB-irradiation remain to be elucidated, microarray analysis may provide a new view of gene expression in epidermal keratinocytes following UVB exposure. |